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ABSTRACT

This paper examines the Semtner and Chervin global ocean model in the tropical
Indian Ocean. The primitive equation,,eddy-rcsolvingf,model covers a domain from 75°S to
"65°N -at a horizontal resolution-of 1/2°, with 20 verticallevels. In. a-new phase of an
-ongoing simulation, the wind stress has been-changed from annual mean. wind‘forcing to
'seasonal forcing, using the Hellerman:and Rosenstein (1983) wind stress. The model is
shown to reproduce the seasonal:features of the Indian Ocean circulation. The seasonally-
reversing Somali Current:is simulated-by the:model, and-includes seasonal undercurrents
and a two-gyre system during the southwest monsoon. Westward:flow occ' rs beneath the
Southwest Monsoon Current during June and July. The major equatorial currents of the
two monsoon regimes are well-represented, including semiannual Wyrtki jets and the
Equatorial Undercurrent. The seasonal features .of the ‘marginally-resoli ed. Leenwin
Current are pre.ent in the model. Monthly mass transports have been calculated for the
major equatorial currents, as well as the Pacific-Indonesian throughflow, and are consistent
with observations. The structure-of deep equatorial jets inthe model is highly baroclinic;
an upward tilt in the jets from west to east accounts for simultaneous westward and upward

phase propagation of the zonal velocity.

The Haney (1971) method of prescribing surface heat flux, adapted to-th. Levitus
(1982) data base, is analyzed by comparing the model surface heat f'ux and monthly
temperature fields with existing.climatologies. The modcl is shown to e¢xhibit an inherent
interannual variability, despite the intérannual invariance of the wind strcss. The small
amount of interannual variability is superimposec on a strong seasonal cycle. Near-surface

currents in the model-are in good agreement with existing studies of drifting surface buoys.
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1. INTRODUCTION

The Semitner and Chervin-(1988) study of-global ocean circulation reported the resuits
of an eddy-resolving global ocean-model forced by mean annual climatological winds.
The purpose of this paper is to report on-the follow-on experiment, which forces:the ocean
model with-mean monthly wind stress. Due to the intense seasonal-cycle:of the tropical
monsoon, the change to-seasonal forcing in the model was expected to have its greatest
impact-in the tropics. This study examines the:seasonal cycle of the tropical Indian Ocean
in'the model.

A. BACKGROUND

The worldwide industrial growth of the 20th century has caused environmental
changes which man is only beginning-to understand. The advent of global remote sensing
systems has recently given us-the ability to-monitor the effect that man has on the world
climate, yet we still know very little about the time scales of naturally-occurring climatic
variability. We now recognize that there are important feedback mechanisms between the
atmosphere and the oceans, which must be understood if we are to be able to predict
climatic change. Computer simulation-is the most promising tool for projecting the results
of increased atmospheric emissions by industrial activity, and it may help predict the
environmental impact of pollution of the seas. The trends in increasing computer power
indicate that we may soon have sufficient computing resources available to conduct studies
of climatic change, using coupled air-ocean simulations with realistic physics. Therecent
development of eddy-resolving global ocean models is a very important step in the

development of global climate modeling.




Simulations of ‘the ocean-circulation require appréxirriétely 1,000 times as much
computer power.as atmospheric-simulations, because-of the smaller space scales andlonger
‘time-scales of motion in the sea. ‘Hence, researchers involved with general:circulation
ocean modeling have always been limited in the scope of their studies:by the available
computer power. Although simulations of -the global ocean circulation have been
performed-for more than 20 years, the understanding of the important role of mesoscale
and sub-mesoscale features in the -ocean requires that an ocean :moéel %nust resolve
mesoscale eddies if it is to accurately portray the energetics and variability of the-ocean.
While some global modeling strategies have attained mesoscale eddy-resolving resolution,
limitations-in computer power have required some limitation in the'modei physics, such-as
quasi-geostrophic or layered medels. The Semtner and Chervin: model (Semtner and
Chervin (1988), Chervin and Semtner-(1988)), hereafter referred to as-SCM, is the first
atternpt ata-primitive equation, eddy-resolving global circulation simulation.

As physical limitations in semiconductor technology are reached, cémputaﬁonal-powcr
has continued to increase through the use of supercomputer architecture employing
multiple, parallel processors. The SCM code was- designed-to be able to exploit rapid
increases in computing power expected in the 1990°s by-being easily reconfigured:to run
on new models of Cray supercomputers, employing-up to 64 processors. Although the use
of multitasking may afford significant speed increases, any bottlenecks in the program
(i. e., steps which must be-run on only-one processor) severely restrict the speedup gained
by adding additional processors. 'I'hisrelati(znship is described in Amdahl’s Law:

S=Trs D )
where the speedup (S) to be gained by going from 1-processor to N processors is strongly
dependent upon N and s, the sequential fraction of program which must.be performed on

one processor. As the number of processors becomes greater, the requirement for




efficiency increases. The:SCM.:code results in-a sequeh;ial—fraction of 0.0036, allowing it
to achieve a speedup-factor of 3.96 when:run on a four proce.sor'machine, 7.80 on eight
processors, 15.18 on a 16-processor machine, and 52:17 on 1 64-processor machine.
Ocean models will have tocbecome extraordinarily efficient to take n.oximum-advantage of
parallel processing. The SCM, when run-at 1/2° horizontal resolution (as ‘n-Semtner and
Chervin (1988) and this study), is only marginally eddy-resolving, but is fully capable-of

greater resolution when run on more powerful machines.

B. THE INDIAN OCEAN

The surface currents in the Indian Ocean are divided into two seasonal regimes,
associated with_the northeast and southwest monsoons. As shown in Figure 1.1’(a), the
northeast monsoon regime consists of a system of zonal currents, defined from south-to
north by the Antarctic Circumpolar Current, the South Equatorial Current, the Equatonal
Countercurrent, and the North Equatorial Current. The southwest monsoon season
I (Figure 1.1(b)) creates the powerful northeastward-flowing Somali Current, and a two-
gyre system Gefined by the the Antarctic Circumpolar Cunrent, the South Equatorial
Current, and the Southwest Monsoon Current.

Oceanographic observations in the Indian Occan have lagged those of the Atlantic and
Pacific Oceans, due o the limited number of shipping lanes, long transit times and great
cost of sending oceanographic ships to the area from North American and European ports,
as well as limited financial and naval interests in the area by major oceanographic countries.
Figure 1.2(2) (from Levitus, 1982) shows the density of Indian Ocean surface and
subsurface temperature measurements, and Figure 1.2(b) shows the diswribution of surface
observations in the Indian Ocean from the Hanstenrath and Lamb (1979) atlas. The

coverage is very sparse outside of the shipping lanes.




This paucity of observations is quite significant, because the Indian Ocean has:many

unique and:seasonal features, which-have-no analog in the Atlantic and-Pacific Oceans.
The basin is closed to:the-north, and the presence of the Asian continent causes several of
the unique Indian Ocean features. First, the monsoon cycle in:the Indian Ocean is:much-
stronger than in the other oceans, due to such key elements as heating of the Himalayan
massif, and intensification-of winds along the African coast. Unlike the Atlantic and
Pacific Oceans, the Indian:Ocean has no communication with-northern polar-or subpolar
waters. Furthermore, as described in Brekhovskikh ez al., (1986), the presence of the
Indian subcontinent causes a significant east/west basin difference-in moisture patterns.
The monsoon brings seasonal reversals of surface currents at several points in the Indian
Ocean, including the Somali Current, zonal surface-currents at the Equator, the Leeuwin
Current, which flows into the prevailing wind, and the Equatorial Undercurrent.

Although equatorial undercurrents are known to exist in the Atlantic, Pacific, and
Indian Oceans, the monsoon seasonal cycle causes the equatorial-undercurrent in the Indian
Ocean to be quite unique. The Equatorial Undercurrent (Cromwell Current in the Pacific,
Lomonosov Current in the Atlantic) is a thin, equatorially-trapped subs‘urface eastward jet
which traverses the entire basin beneath a strong, westward surface flow. It is a persistent
feature in the Atlantic and Pacific Oceans, but has been observed only in the boreal-spring
in the Indian Ocean. However, like many other phenomena in-the tropical Indian Ocean;,
the data is sparse. Observations have reported westward subsurface currents during the
southwest monsoon, and a highly baroclinic structure, but the seasonal cycle of the
subsurface structure is not well understood.

The goal of this study-is to describe the seasonal.cycle of the tropical-Indian Ocean in
the SCM, and to compare the model with observations. There are two significant results

which may come out of such an analysis. The first isto-demonstrate the-credibility of the




model (and-to determine weaknesses which need to be improved-in further studies). The
second result is that the ocean may-be studied systematically, gaining insight into processes

at work which have escaped-limited observational resources.



II. THE MODEL

The progress of numerical:modeling, like so many other technologies, has been largely

evolutionary, with small'improvements added to refine existing model codes, in between-

major-revolutionary steps-associated with new. computer-architectures. This-study falls into
the former category; the difference between this study and the model described by Semtner

and Chervin (1988) is that monthly-wind-forcing is:incorporated, instead of an annual mean

forcing. The SCM code is a primitive equation, robust-diagnostic global ocean circulation
model with 20 vertical levels and 1/2° by 1/2° degree horizontal resolution, covering a.

domain from 75°S to 65°N. The model is based on the Bryan-Cox model code (Bryan and-

Cox,1968), revised to allow arbitrary bathymetry -and.coastlines (Bryan, 1969), updated

for vector processing (Semtner, 1974) and for supercomputers employing parallel

processors. (Semtner-and Chervin, 1988). Figure.2.1 illustrates-the major general ocean
circulation development efforts which led up to this model. Further details of the historical
progression of global:ocean modeling are given in Semtner (1986a).

TABLE 2.1. EXPERIMENTAL SEQUENCE , AFTER SEMTNER AND
i CHERVIN (1988).

‘Restoring Time Constant
| Phase Integration | Wind ‘| Horizontal |25-710m- [:Deep Ocean
Period, years | Forcing =~ [Mixing | = - |
1 0-4 | Annual mean | Laplacian” |1year = ].1year
2 4-10 Annual mean | Laplacian = [:3years =~ |3 years °
3 10-18 " | Annual mean | Laplacian ‘none 3years -
4 '18-22.5 | Annual mean-ybiharmonic | none . | 3years
> 22.5-32.5. |- Monthly ‘biharmonic {none  ~ 3years .

This study is part of a 32.5-year simulation of the global ocean circulation. The paper
deals with the results of Phase 5 of the experiment, as listed in Table 2.1. Phases 1-4 were

reported by Semtner and Chervin (1988). Since this paper is dealing with the monthly




wind forcing, the-year numbers referred to in this-paper will apply only to-Phase-5 (Year 1
is the first year of:simulated monthly forcing).

The wind stress used in the model comes from the Hellerman and Rosenstein (1983)-
global data-set. These wind stress values,.defined on a grid with 2° spacing, have been
interpolated-to the 1/2° surface velocity grid-points of the moiel. While Phases 1 through 4-
used annual mean Hellerman and Rosenstein wind stress, in Phase 5, the:data base-was
partitioned-into mean monthly values. A smooth curve was fit to these' monthly values, and:
divided into daily increments. During-the integration, the wind stress is held constant over
a‘three day period, at-the end of which model results are archived, and-a new value of wind
stress is selected. Over a three-year period, each-daily wind-stress value isused-once, and
applied for three days. While the wind stress in Phase 5 has seasonal variability, it has no
interannual variability. It will be shown that this lack of interannualk variablity leads to
some features in-the model climatology which-deviate from observational climatology.
However, the non-linear characteristics of the model give it an inherent (but small)
interannual variability.

Temperature and salinity fluxes at the surface have been parameterized by forcing the
surface grid-points to monthly mean Levitus (1982) values on a monthly time scale, after
the method of Haney (1971). In Phase 5, the heat and salt budgets are unconstrained
between 25-and 710 m, while the deep layers are restored to Levitus values on a 3-year
time scale. The only Levitus forcing that occurs within the thermocline is from 55°-65°N,
and from 65°-75°S, where T and S are restored to Levitus (1982) on a 3-year time scale. In
this robust-diagnostic, free-thermocline strategy (Sarmiento and Bryan, 1982) , the top
layer is forced with wind stress on the momentum grid points and with Levitus forcing on

the T,S points, while the seasonal thermocline is completely free over most of the domain.




Since-the 30 years of this study is short compared with the-millenium time:scale of the deep
‘ocean, the deep.layers:are weakly restored to Levitus values to constrain any drift.

The 20 vertical levels in-the model ar'cfstackeg' downward, with thelocal bathymetry
defined-by the-number of boxes. The levels are-unevenly spaced, with 10 levels in-the
-upper 710 m to resolve the-thermocline. Figure 2.2 illustrates the vertical arrangement of
levels in the model. The spatial averaging of bathymetry required by the grid size-and some
simplifications-in geometry have resulted-in an idealized -model-ocean (Figure 2.3). The
Red Sea, the Gulf of Aden, the Persian Gulf, the Gulf of Oman, the Andaman Sea, and the
-Great Bight of Australia have beenfilled in. In order to simplify-calculations of the mass
transport streamfunction (Semtner; 1986b), some-major islands-have been connected-to
continental land masses: Madagascar has been connected to Africa by filling in the
Mozambique Channel. Sumatra, Java, and-Borneo have been incorporated into a larger,
simplified southeast Asian-peninsula, and the islands of New Guinea-and Tasmiania have
been connected to Australia. Other islands; such-as-Ceylon, Socotra, and the Seychelleés,
have been shoaled to-a depth of 100 m (then subjected:to.nine-point smoothing), which
allows their major bathymetric features to remain in place, yet eliminates-the numerical need
to perform a line integration around these islands (Semtner, 1986b). The bathymetry of the
model is'shown in Figure 2.4. While performing line integrations around every island-is
possible, it was considered to be too inefficient to include every island in this global
circulation study. The incorporation of the free-surface effect by Killworth et-al. (1990)
requires no such line integration, and the use of an arbitrary number-of islands without
such computational-penalty is now possible.

Although the geography has been simplified, the Indian Ocean is not constrained by
any regional boundary-conditions. Itis free to exchange momentum; heat; and salt with.the

other parts of the world ocean, which are being simulated bimultaneously. The transport-of




warm water from the-western Pacific Ocean through-the Indonesian Archipelago, across the
Indian Ocean, and into the Atlantic Ocean via Agulhas rings-has been described for the
annual forcing phases-of the-simulation.by Semtner and Chervin-(1988).

Other-features of the model include a Richardson Number-dependent parameterization
of vertical:mixing after the-method of Pacanowski-and Philander (1981),-and biharmonic
parameterization of frictional and diffusive properties. The_explicit-treatment-of eddies
allows the-amount of mixing carried out by parameterization of sub-grid scale processes to
be minimized. The eddies perform the bulk-of the work of mixing: momentum, salt, and

heat, leading to a fairly realistic representation of the:global circulation.
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IIl. WIND STRESS

Iris important to understand:the dynamics of the Indian-Ocean in:terms of-seasonal
variation in the wind stress; this-section will review the-annual cyciz-of Hellerr:an and:
Rosenstein (1983) wind stress in the-trop.cal Indian Ocean of ‘the global- model. The
monthly mean wind-stress, which was-used to force Phase 5-of the experiment, is shown:
in Figures-3.1-3.6. The predominant feature is the wind stress -due to the southeasterly
trade winds. The SE trades are very constant in- azimuth throughout the year, with
sigaificant variation-only<in magnitude and latitudinal extent. The other major feature of the
mean forcing is'the southwesterly winds in the western Arabian Sea-and the Bay of Bengal.
These areas, however, have a large seasonal varigt ity in both azimuth and magnitude, and
it is this monsoon which is associated with the major ocea.. citculation changes in the
Indian Ocean.

In January (Figure 3.1 (a)), northeasterly flow is preva‘ent-in-the Indian Ocean and
Arabian Sea in the Northern Hemisphere, known as -the Northeast Monsoon. The
northeasterly flow extends to approximately 10°S in the western Indian Ocean near
Madagascar. South of 10°S, the winds are from ESE in the western Indian Ocean,
becoming southeasterly in the eastern Indian Ocean. These are the southeasterly uade
winds. From 63°E to the eastern part of i..e ™dian Oceaa, there is a band of westerlies
with a-latitudinal extent of 5°, located slightly south o v.e‘equator. This band of westerlies
and the southeasterly trades converge to form the I-.:ertropical Convergence Zone (ITCZ) at
10°S. The maximum wind stress is approximately 1.3 dyn cm2, located off of the Somali
Coast. In February (Figure 3.1(b)) the flow is virtually identical to January, with flow

weakening in the eastern Indian Ocean.

10




In March, the flow is weakened in the westerr Indian Ocean, with the wind stress
having decreased to less than 1 dyn:cm2, as-illustrated in Figure 3.2(a). The-highest-wind
stresses are-due to ‘the SE trades in-the easte » indian Ocean. In the-western Arabiar Sea,
the-winds have-veered, blowing:towards t« £ . . .“Aden (toward the western boundary in

the model), while the flow is northei, th e .xal Arabian Sea as part of a large

anticyclonic flow. The climatology shows an - .iicyclone centered at 15°N, 87°E in the Bay
of Bengal. '

By April:(Figure 3.2(b)) the SE tredes ha ‘e secome stronger, penetrating as far north
as the Equator in the Western Indian Ocean. The maximum wind stress-is approximately
1.5 dyn cm2, and the SE trades -extend further 1o the east. There is a southeastctly
onshore flow over the Kenya /Somali coast, and the -wind stress. is very weak in the
western Arabian Sea. A weak anticyclone is present in-the central Arabian-Sea, resulting in
-northwesterly winds alongshore at the Indian coast. The anticyclonic cizculation in the Bay
of Bengal has resulted in a reversal-of the directior. of the wind stress since January. The
ITCZ (not shown) has shifted ..~rth, and the band of equatorial westerlies has also-shifted
north, with its direction changing from WNW to WSW. The band of westerly winds has
also increased its latitudinal width to 10° (i.e., between 10°S and the equator).

May is a-transition month from-the NE-to SW monsoon regime. Figure 3.3(a) shows
that the cross-equatorial flow is much stronger. The SE-wades-exter.d to .he equator, then
become southwesterly. The southerly onshore flow at the Kenyan coast has increased in
magnitude. The weak anticyclonic flows of April in the Arabian Seaand Bay of Bengal
have been replaced by a strong westerly anticyclonic flow in the Arabian Sea, and a strong

westerly cyclonic flow in the Bay «. Bengal. The wind stress in the western Arabian Sea

has completed a 180° shift since March and increased its amplitude to a m.ximum of 1.3

11




dynfcm'z. The-winds in the western Indian Ocean:have-attained the:-basic-pattern that they
will-retain throughout the oncoming SW monsoon:season.

in-June, the circulation pattern established in:May:picks up tremer.dous strength with
the-onset:of the SW Monsoon, as depicted 1n Figure 3:3(b). Wind'stresses in-the western-
Indian Ocear Lave increased 2-3:dyn cm2. The onshore flow in India and sci..heast Asia
has become much stronger. The wind stress in the- western Indian Ocean approaches
4 dyn can-2. The SE trades turi. and"become SW at the equatori: the westcrn Indian
QOcean, and at 2°S in the eastern-Indian Ocean.

July (Figure 3:4(a)):is the month of the largest wind stress valvzs of the SW
Monsoon. Hellerman and:Rosenstcin-(1983) reported-that the highest wind stress in the
106-year-global data set occurs ir: the western Indian Ocean. The wind stress at 10°N/53°E
is 4.9 dyn em2. The great intensity of the winds in this-region is due to the Finlater Jet
(Finlater, 1969), which causes-intensification of the southerly - wind flowing onshore over
Kenya and Somalia. The wind stress in-the western Indian Ocean has a typical increase of
1 dyn cm2from June to July.

The SE trades-in the western Indian Ocean.continue to increase in magnita! during
August (Figure 3.4(b)), creating wind stresses of nearly 2 dyn cm-2. In-contrast, the
soutlwe sterly monsoon winds in the northwest Indian Ocean decrease, reducing wind
stresses. there by 0.5-1 dyn cm-2.

September (Figure 3.5(a)) brings further weakening of the SW Monsoon, with wind
stress levels decreasing by 1-2 dyn emir=. The climatological wind stress magnitudes in
September are oniy 0.5-1-dyn.cm 2 greater than the levels in-May, ind?cating'that the SW
Monsoon season is ncarly over.

The October wind stress plot (Figure 3.5(b)), shows a pattern of weak wind stress:in

the noithern-Indian Ocean, indicative of transition to the NE monsoon séason. While the




Arabian:Sea experienced a large scale anticyclonic circulation in-September,-the anticyclonic

flow is now weak in the-western Arabian:Sea, while:the flow in:the:eastern Arabian Sea is.

cyclonic. Although the Bay of Bengal wind stress pattern indicates that-cyclonic winds

remain, the magnitude is small and there is no Burmese onshore flow as scen in-

September. The SE trades have typical ralues of 1.5-dyn cm-2, weakening from the
September values.

The November climatological wind stress plot (Figure 3.6(2)) illustrates that the
transition to the NE Monsoon regime is complete. Northeasterly flow dominates the Bay
of Bengal and the Arabian Sea, resulting in wind stresses less than 1 dyn cm2. The
weakening SE trades have shifted to..nz east :~d the equatorial westerly pattern is weaker.

The December plot of wind str.ss-(Figure 3.6(b)) is very similar to the pattern of
January. There is an increase in wind stress strength to 1 dyn cm2, and the belt of

westerlies has shifted south of the Equator.
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IV. RESULTS

A. NEAR-SURFACE CURRENTS
1. The Seasonal Cycle

In this section, plots of the monthly mean current vectors will:be discussed. The
monthly mean-currents are chosen to-illustrate the seasonal cycle-of the SCM in the:Indian
Ocean, forced by the Hellerman: and "Rosenstein-(1983) winds. Before the monthly mean
currents are reviewed, several points:should be emphasized: First, the lack of interannual
variability in the wind stress_causes-the monthly mean currents :(and many-other mean
fields) to be very similar-from year to-year. ‘However, the eddy fields do vary considerably
from year to year, as illustrated by Figure 4.1. Figure 4.1 -(a) shows-the instantaneous
vector field at.37.5 m-in the western: Indian Ocean on January 15 of Year 4, and-Figure
4.1 (b) shows-the same field-on January 16 of Year 5.(January 15 was not archived that
year). The eddy activity of the model is the most striking feature of these plots, and-there is
considerable variation in the eddy fields between the two years shown. In-the monthly
mean vector plots (January of Year 4 is shown.in Figure 4.2; Year 5 is not-shown) ,-the
-averaging of the eddies creates a “patchiness”, and the geostrophic currents are the
dominant feature. While differences can be seen-in the monthly mean-vector plots fromr
year to year, the changes are minor, and the Year 4 monthly mean plots presented below
are considered to be a representative sample of the multiple year simulation. Figure 4.1
also illustrates that, as expected; the-instantaneous:currents throughout the basin are more
vigorous than the mean flows depicted below.

The monthly mean near-surface (37.5 m depth) geostrophic currents. in the

Indian Ocean basin of Year 4 of the simulation are shown in Figures 4.2-4.13. (Since the




upper grid boxes are 25-m thick each, the Ekman effects aré largely-confined:to the top
layer (not shown)). In January, Figure 4.2 shows the South Equatorial-Current (SEC)
flowing westward at approximately 15°S in response to-the forcing of the SE trades. It
turns south-at the east coast of Africa to feed the Agulhas Current, and north to feed the
Equatorial Countercurrent (ECC). The NE Monsoon forces the westward-flowing North
Equatorial Current {NEC) from 2°S to-8°N. It turns-south at:the African coast:to join the
SEC, becoming-source waters-for the ECC. The NE:Monsoon turns at:the equator-to form
a band:-of equatorial westerlies, which provide the -continued forcing for the ECC as-it
transits-the entire basin between 3°S and 7°S.

In February (Figure 4.3), the NEC attains its greatest strength, -achieving
westward velocities as high as-68 cm s-1. By March (Figure-4.4); with-the reduced wind
stress from the waning NE Monsoon, velocities-are reduced throughout the NEC, the
reduced wind-stress in thé-eastern Indian Ocean causes-the NEC to retreat to the west. As
the NEC weakens, the ECC becomes-more concentrated as its-southern bound moves from
7°S to 5°S inresponse to the south equatorial westerly trades shifting farther-to the north.

In April (Figure 4.5), although westward-wind stress-is no longer available-to
drive the NEC, the- NEC.continueés to exist as a-weak westward countercurrent south of
India throughout the SW monsoon. The ECC in April becomes a meandering flow
between 5°S and the equator in the western Indian Ocean, splitting into two jets at 75°E.
One jet-remains at the equator, in-the region of eastward wind stress where the Wyrtki jet
forms in May, and the other at 5°S, in the region of the doldrums between the.SE trades
and the equatorial westerlies. This branching of the eastward flow south-of the equator
persists throughout the southwest monsoon period until the ECC is re=established in
December. The eastward flow at 5°S, characterized.as the ECC.during the NE monsoon,

remains a distinct jet during the SW monsoon, however, during the SW monsoon period it
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is no longer a countercurrent, and is considered part of the SW Monsoon Current. The
southwesterly flow along-the Somali coast has:minimal velocities in April, as expectedin a
region of weak-wind stress.

The rapid -onset of the SW Monsoon in late May -causes :the climatological
monthly mean wind stress in May to be-northeastward-along the Somali coast,iesulting,in
areversal of the Somali-Current (Figure-4.6). The eastward flow has formed an equatorial
surface jet (Wyrtki jet),-and is confined between-3°N and 3°S. The core of the jét attains an
eastward-velocity in excess of 1-m/s between 60°E and'80°E. A weak eastward:circulation
remains in the equatorial‘trough at 5°S.

By June, the eastward-flowing SW Moiisoon Current (SMC) is established at
5°N (Figure 4.7). Increased-solar insolation in the Northern 'Hg‘misphére'causes the ITCZ
to move northward in the summer-hemisphere, and the equatorial trough in the winter
hemisphere moves equatorward. As.a result, the region of maximum eastward wind-stress
migrates northward, and:the doldrums move closer to-the equator. Although the eastward-
component of wind stress at the equator has increased to the west of 60°E, it-decreases
between -60°E and 80°E, as shown in Figure 3.3. This results in a- weakening of -the
equatorial jet, which reached a maximum in May, and the subsequent intensification of the
SMC. The Somali Current has strengthened under the increased wind stress, forming a
western boundary current which extends as a strong jet to 8°N, where it recirculates
southward to feed the SMC and- the equatorial surface jet. The current recirculates
southward in several sections, with -branching at 4°, 6°, and 8°N. The branch-at-4°N forms
part of an anticyclonic gyre, extending to the Equator, known as-the Southern Gyre.

Ir} July (Figure 4.8)-there is continued weakening of the equatorial surface jet,
and strengthening of the SMC. The former equatorial surface jet has moved south intothe

doldrums, while a westward countercurrent has developed at 2°N, between the two
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eastward currents. The appearance of the countercurrent is-due-to surfacing of a-westward
deep-level current (the deeper currents will be discussed separately in sections B and Cof
this chapter). Under the influence of continued strengthening zonal wind stress, the SMC
no longer branches off from the equatorial jet, but is fed from the Somali Current
recirculation, and becomes visible as a distinct jet at:approximately 70°E. Its .greatest
strength occurs at-82°E, where-the core of the jet-attains 2 velocity of 80 cm s-!. In-the
month of ‘the highest wind:stress in:the-western Indian Ocean, the- Somali Current also
reaches its highest velocity of 201 cm s-}. The Somali:Current continues to be a onc- gyre
system, with the Southern Gyre centered at approximately 3°N. The broad offshore
branching of the Somali Current extends from 4°N-to 12°N. Despite the strong wind stress
throughout the Arabian Sea-and the Bay of Bengal, the circulation inthese basins remains
generally weak.

By August (Figure 4.9) the broad northern segment of the Somali Current
offshore flow:has developed into a second gyre. This-northern gyre, known as the Great
Whirl, is centered at 10°N, while the Southern Gyre remains centered at 3°N. The former
equatorial surface jet may again be referred to as the Equatorial Countercurrent, since it is
again flowing eastward, at 3°S, in an opposi.e direction to the zonal wind stress throughout
most of the basin. The SMC has weakened in its peak intensity in response to the reduced
wind stress during August, yet it becomes organized into a coherent-jet slightly farther to
the west, at 65°E. The transitory westward countercurrent which appeared in July at 2°N is
no longer visible at the 37.5 m level.

Increased equatorial zonal wind stress in the eastern Indian Ocean in September
results in a southern branching of the SMC, forming a jet just to the north of the equator
(Figure 4.10). This jet peaks at 76 cm s°! at alongitude of 87°E. As the equatorial trough

moves southward, this jet will reform the Wyriki surface equatorial jet. The ECC is




present in the-doldrums at 4°S,-extending across most-of the ocean basin. In the Somali

Cunent region, the Great Whirl:has moved northward to-12°N, while the-Southern Gyre
has developed:into two-anticyclonic circulations. One of these gyres is centered at 3°N, at
the August position of .the Southern Gyre, and the other one has.-formed-at 6°N from the
broad offshore flow of the Southern Gyre. An anticyclonic gyre has formed to the
northeast of the GreatWhirl, at 13°N/58°E. This gyre is the model analog of the Socotra
Eddy.

In October (Figure 4.11), with alongshore transport by the Somali Current
greatly diminished, the zonal currents. in the western Indian Ocean are more clearly
organized. October, like May, is a month of relative maximum wind stress at the equator
The Wyrtki-jet no longer appears as-a southern branching of:the SW Monsoon Current, but
is a continuous:zonal jet from the Somali Current region to the eastern end-of the basin. It
attains a maximum velocity of 81 cm s-1 at 84°E, with:the core of the jet at 1°N. This
corresponds to-the region of highest zonal wind stress. The Great Whirl is located at
12°N, while the two gyres to-thé south are located at 4°N and 7°N. These-southern gyres
are substantially-weaker-than they were in September.

In November (Figure 4.12), there are two anticyclonic gyres visible at 10°N.and
14°N, which are remnants of the Great Whirl and the Socotra Eddy. The zonal current at
the equator attains a semiannual maximum in November, as-the Wyrtki jet is centered on
the equator. It attains a maximum velocity-of 75 cm s°1 at-83°E.

During December (Figure 4.13) the Great Whirl continues to diminish, the

surface equatorial jet loses strength, and the ECC reorganizes. As a result, the model

Indian Ocean circulation returns to the basic pattémn it had.in January (Figure 4.2).




2. The Wyrtki Jet

As first described by ./yrtki (1973), a semiannual surface equatorial jet-appears
in the Indian Ocean during periods-of maximum zonal wind stress. This relationship can-
be clearly seen in the longitude-time plots of Figure 4.14. Figure 4.14-(a) shows relative
maxima in:the magnitude and zonal extent of the zonal wind stress in-the months of May
and October, related to the seasonal migrationzof the ITCZ. (Another zonal-maximum is-
visible in the western Indian Ocean in June and July; related to the Finlater Jet.) Figure
4.14 (b) shows the vertical integral of the zonal current at the equator in-the top two levels
of the model (12.5 and 37.5:m). It shows eastward currents with maxima in May and’
November, in response-to the-periods of maximum zonal wind stress.

Figure 4.15 (Reverdin (1987), after-Cutler and-Swallow (1984)) shows that
obsetvations of zonal equatorial currents, derived from ship drift reports in the Indian:
Ocean, show equal strengths-of the two Wyrtki Jets (the time scale is reversed from that
presented in Figure 4.14), whereas the SCM has the May jet (113 cm s-1) stronger than the
November jet (72 cm s°1). Similar results have been.obtained in the GeopyhysicaLFluid—
Dynamics Laboratory (GFDL) of Princeton University regional simulation of the Indian
Ocean, which: also uses Hellerman and Rosenstein (1983) winds. (F. Schott, personal
communication). (Figure 4.15 also shows the good agreement of the strength of the
model NEC (68 cm s-1) with the ship drift reports (>60 c¢m s-1). Overall, as shown in-
Figures 4.14 and 4.15, there-is good agreement in .ne timing-and strength of the:SCM

surface equatorial currents with observations.)

B. THE EQUATORIAL UNDERCURRENT
The subsurface velocity structure in the tropical Indian Ocean has not been well-
sampled spatially or temporally. Studies of the area have shown a great deal of variability.

and a high degree of baroclinicity in the subsurface flow. Due to the variability of the
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monsoon forcing, the-Equatorial Undercurrent (EUC)in the Indian-Ocean displays much
more variability than its counterparts, the Cromwell Current:and the Lomonosov Current in
the Pacific and Atlantic oceans, respectively. Thei‘fequatorial undercurrents” are described.
as thin, equatorially-trapped eastward jets, which are-located beneath strong, westward-
flowing equatorial surface flows. The eastward-flowing EUC has been observed to-exist
1in the Indian Ocean -during January through April, extending from 50°E to 90°E.
Khanaichenko (1974):cites mass transports_ranging from 11 to 40 S_v; with a- mean of
26 Sv.

The SCM Year 4 zonal-current velocity at the equator was averaged between 117.5:and
160 m depth, and its longitude-time dependence is shown:in Figure 4.16. The eastward:
EUC is visible from January to April, attaining a-peak zonal velocity of 62 cm s at 80°E
during March. Kort {1977) reported that observations of the EUC at 64.5°E revealed a
peak velocity-of 64 cm s-1 at 100 m-depth on 18 March, 1974, while the SCM output on
the tape archived at 19 March of Year 4 shows a peak at 57:cm s-! at-a depth of 117 m.
Mass transports of.the EUC at 80°E in Year 4-range from 19-31 Sv. Leetmaa and Stommel
(1980) took measurements.of the EUC at 55.5°E, and found that at the end of the northeast
‘monsoon, the EUC shifts southward to-merge with the ECC; in contrast, the SCM shows
that the EUC moves upward and merges with the northward-migrating ECC.

A period of westward velocities is.seen in Figure 4.16 during tile months-of June
through August. Several authors have reported westward velocities-at this level during the
southwest monsoon, including the studies of Knox (1976), Luyten - and Swallow(1976),
Luyten (1981,1982), Polonskiy and Shapiro (1983), Ponte and Luyten (1990). Knox
(1976) reported that the westward undercurrent was observed following the semiannual
eastward Wyrtki jets, as a possible relaxation of water “piled up” in the eastern basin by the

Wyrtki jets. The SCM shows a westward undercurrent following only the May Wyrtki Jet.
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One possible-reason that the-model shows-only one period of the westward undercurrent is
because the SCM Wyrtki:jet in November is much weaker than the May jet (Figure 4.14)
while the ship drift observations (Figure 4.15) indicate Wyrtki jets of equal sirength.
Theseasonal cycle of the vertical structure of the-zonal currents at the equator:-during
Year 4 is shown-in Figures 4.17-4.28. Figures 4.17-4.22 show the zonal current velocity
along the equator from 0610 m, while Figures 4.23-4.28 illustrate the zonal currents in a
cross section at 80°E, from 20°S-20°N. The time sequence of Figures 4.17-4.22 shows the
eastward- EUC beneath the NEC during the SE Monsoon, and merging of the EUC with-the
Wyrtki jet in April (Figure 4.18 (b)) and May (Figure 4.19(a)). The westward
undercurrent:is shown during the boreal summer, and-the semiannual Wyrtki jet is-visible
again in October (Figure 4.21 (b)). Figures 4.23-4.28 illustrate the same features of the
seasonal cycle, yet show off-equatorial features as well. The appearance of the westward
countercurrent at 3°N in July:(Figure-4.26 (a)) is shown to be a surfacing of the-westward
undercurrent. The synoptic structure throughout the basin-can:be seen-in Figures 4.29 and
4.30, which show meridional sections at-60°E, 70°E, 80°E, and 90°E for the months of
February and July in Year 4. Leetmaa and Stommel (1980) studied the EUC at 55.5°E, and
found that at the end of the northeast monsoon, the EUC shifts southward to-merge with
the' ECC, but the SCM shows the EUC moves upward-and merges with the Wyrtki jet (see
Page 20-also). Figure 4.31 is a vector plot of the instantaneous currents at 117.5 m,
archived on March 10 of Year 4. It clearly shows the EUC spanning the entire basin, and
the eddy-resolving nature of the model is apparent. The eastward flow of the ECC.can be

seen to the south of the EUC.

C. DEEP CURRENTS
The seasonal variability of the EUC and baroclinic structure of the equatorial Indian

Ocean, along with a sparse set of observations, have made it very difficult for
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oceanographers-to come up with a comprehensive picture of-the flow in-even the shallowest
subsurface layers. The model exhibits the same type-of complex-vertical structure-that the
observations (Knox (1976); Luyten and- Swallow(1976), Luyten (1981,1982), Polonskiy
and Shapiro (1983), Ponte-and Luyten (1990)) suggest, as shown in Figure 4.32,a cross
section from 3°S to 3°N. Taken in March, when the EUC is at-its peak strength, the plot
indicates-cores. of westward flow near‘the surface-and-at 435-m depth, while separate
eastward:-cores are visible at 117 m, 1160-m, and 3575 m depth. Analysis of time
sequences of zonal current-plots indicate that an upward:phase-propagation-of the zonal
currents takes place in the equatorial region. However, O’Neill and Luy;,ten (1984) reported
that acoustic dropsonde observations-of the equatorial Indian Ocean at 53°E-do not yield
evidence-of vertical phase propagation-of the-zonal currents. McCreary (1987) reported
model results-which suggested that the interaction between deep.mean-currents and near-
resonant Kelvin waves can.account for:much-of the observed deep jet structure without
vertical phase propagation. However, the theory-of deep jet dynamics remains incomplete;
McCreary (1987) reported that while the model reproduced:the deep current structure well,
the near-surface flux field was-unrealistic. Further observational and theoretical work is
required -to suggest changes to the SCM which would more accurately represent the
dynamics.of the deep jet structure.

The currents at 4125 m during June of Year 4 are illustrated in. Figure 4.33. The
model domain at this-level shows the various deep basins in the,'Indian'bcean: the Arabian
Basin, the Somali/Mascarene Basin, and the Madagascar Basin in the western Indian
Ocean, anid the Mid-Indian Basin and Wharton Basin, separated by the Ninety East Ridge.
A series of deep eddies are visible, as is the tendency of the currents to form western
boundary currents. A series of strong, anomalous currents is seen at-approximately 123°E,

in the Celebes Sea, where anomalous data in the Levitus (1982) data base was revealed by
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the model. The temperatures at this depth are 5-10°C too-high, causing the model to:

respond ‘to the anomalous gradients:by creating currents which-are too strong. (This.

example-of the model revealing-bad data in:the Levitus data-base-suggests that the model

may be able to;point out more subtle deficiencies in the global-observational data bases.)

The complexity-of the subsurface currents in the Indian Ocean is further demonstrated-

in-Figure 4.34; illustrating the-longitude-time dependence of the zonal velocity at 435 m

depth. This figure shows a pattern of convergence and divergence, which travels

westward at approximately 25-35 cm-s-1. This pattern-of convergence and divergence is

visible also in:Figure 4.35, a plot of monthly mean-current vectors at-the 435 m:level
during March-of Year 4. The westward movement suggests:another interpretation to the
upward phase propagation of the-zonal velocity in.the model. Figures 4.17-4.22-show that
the-zonal jets tilt upward from west to east; westward propagation of such a tilted feature
would also create an-upward phase propagation at-a fixed point on the equator. The source
of the tilt of the jets in the-model is unclear; it is not visible in the deep-thermal structure,

which suggests that the distribution of vertical velocity may play a role.

D. THE LEEUWIN CURRENT

The western coast of Australia is-another unique region of the Indian Ocean. While
most eastern boundary surface currents are the equatorward portions of the subtropical
gyres, the Leeuwin Current is a poleward-flowing (southward) eastern boundary current.
The poleward Leeuwin Current forms in the austral autumn and winter, flowing along the
edge of the continental shelf, eventually extending around the Great Australian Bight. The
Leeuwin Current has only-recently been documented, in part-because it is a very narrow
current, sometimes less than 30 km wide. The Leeuwin Current is also quite notable for
moving at significant speeds (maximum approximately 1.8 m s°1), in opposition to the

prevailing wind stress. Recent observational, modeling, and theoretical studies of the
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Leeuwin. Current have been summarized in Church et-al. (1989) and Weaver and
Middleton (1989). The:prevailing theory, as espoused by Thompson (1984) and Godfrey
and Ridgway (1985), is that the Leeuwin Current is driven by large alongshore steric
height gradients. Weaver and Middleton (19€9) and Batteen and Rutherford {(1990)
demonstrated that the Leeuwin-Current could-be modeled by primitive equation models,
using climatological winds, and without resolution-of the-continental shelf. Since these
modeling studies employed much finer horizontal grid resolution than the SCM, the-ability
of:the model to resolve Leeuwin Current features was-a matter of some interest. Although
the SCM. cannot resolve the Leeuwin-Current to the level-of the observations and local
modeling studies, it does demonstrate many of the seasonal features of the Leeuwin
Current. However, the-current is-marginally resolved, and: suggests t};at*operation of the
model at 1/4° horizontal resolution will result in a-more accurate representation- of the

structure of the Leeuwin-Current.

The -monthly (Year 4 data) averaged vector and temperature-plots of Figures 4.36-

through 4.47 illustrate the seasonal cycle of the Leeuwin Current. The vector plots show
eastward-geostrophic currents, turning poleward at the Australian continental shelf. During
the austral summer, the éastward flow-turns poleward-when it meets the shelf at 29°-31°S.
Church et al. (1989) describes it as a northeastward flow, turning poleward near the shelf
at'29°-31°S. The Leeuwin Current is visible in austral-fall and winter, as the.eastward flow
turns poleward over a wider range of latitudes, and is-augmented by strong-flow from the
northwest shelf. Figures 4.37-4.40 show the development of this southwest flow on the
northwest shelf from February to June. During the same period, the Leeuwin Current
progresses further around Cape Leeuwin each.month, creating an eastward flow along the
southern Australian coast . The series of plots shows an eastward flow along the

northwest shelf from July through December, as well as re-establishment of westward flow



along the-southern coast of Australia. The pluts of the wiuperature field also show features
described by Church.et al.: high temperature (>25°C; waters spread south:of 20°S in
austral autumn and winter, and the Leeuwin Currem hol-is the SST at 32°S above 22°C
until-after June. However, the:plots do not show 20°-22°C water carried north to 25°S-in
summer as described by -Church ez al., they show 22°-23°C water at this latitude in
December, January, and February. Plots of the salinity ficld (not shown) also depict
features described by Church et al:: low salinity-(<35 psu) waters-spreading south of 20°S
in autumn and winter. Hcwever, there were differences in the salinity fields as well. The
salinity at 32°S in the-mode! in June was 35.6; Church er al. describes winter salinity at
this latitude as 32.2-32.4.

Additionally, cross sections were plotted to simulate the Leeuwin Current
Interdisciplinary Experiment (I.LUCIE)- sections depicted in the study of Church ez al.
(1989). Sample comparisons-are shown in Figure 4.48 for‘the Dongara-(30°S) LUCIE
sections. Figure 4.41 (a) shows the LUCIE September 1986-February 1987 mean
alongshore currents for the Dongara section, and Figure 4.48 (b)-shows the corresponding
model section of v velocity during January, Year 4. The LUCIE current section depicts.
mean southward flow (20 cm s-D at the 300. m isobath, and-mean northward flow of 15
cm s-1 at 500 m. The model shows upper level southward flow of 5 cms-1, and a
northward flow of 9 cm s°1 at 310'm. The temperature fields of June are compared-in
Figures 4.48 (c) and (d). The model section shows downward bending of the isotherms
at the coast, but less intense than the LUCIE section. The 20°C isotherm matches well;

however, the 21°C isotherm does not.

E. SURFACE HEAT FLUX
One of the difficulties in designing a global ocean circulation model is that the

investigator must prescribe the heat flux consistently throughout the domain, in a manner




which is consistent with climatology. Unfortunately, there aré no suitable global
climatologies of heat flux. The-method used to parameterize-surface-heat flux in the:SCM
‘(Semtner-and Chérvin (1988))-is adapted after the method.of Haney-(1971): Rather than
explicitly prescribing €ither the:sea surface temperature or the surface heat flux, a suitable
climatological temperature (inthis case the Levitus (1982) monthly:mean-temperature at
12.5 m for a given grid-point) is used-as a set point in a negative *ff;e.dback loop control
system. At each-time-step of the integration, if the model temperature is colder (warmer)
than climatology at a given point, thén it is warmed (cooled) at a-prescribed rate. The
Levitus (1982)-data base was the only climatology suitable for this approach; because it is
global in- scope, «.ailable at multiplelevels , and seasonal. The model incorporates a
forcing term which applies this virtual heat flux toward the Levitus (1982) values on a
monthly time scale. The form of the term, applied t. the top-temperature grid-point (12.5
m)-at every time step; is-approximately
OT _ . Tievis - TMogel
a7 30 days )

The parameterization-of the complex heat budget by such a simplified approach
warrants some investigation. Comparison of the Levitus surface’them'xal'*forcing with the
available regional climatologies of heat fluxes demonstrates that the Haney method
parameterizes the surface heat fluxes adequately in the Indian-Ocean basin. Figure-4.49
illustrates the surface heat fluxes calculated from the Cooperative Ocean-Atmosphere Data
Set (COADS) by Rao et. al. (1989) for the months of January, April, July, and October.
Figure 4.55 shows the fluxes-calculated in the Hastenrath and Lamb (1979; atlas for the
same months, and the model’s-surface heat flux due to Levitus temperature forcingin Year
7 is portrayed in Figure 4.51. The model matches the Hastenrath and Lamb-(1979)

climatology better than the Rao climatology. This may be due to the much longer time




spans-of the Levitus (1982) data base (1900-1978) and the National Climatic Center data

(1911-1970) from which the ‘Hastenrath-and Lamb (1979) flux ¢alculations were derived,
.compared with the COADS data (1950-1979) that Rao ez al: (1989} used.

In general, the SCM heats and-cools:the Indian-Ocean-in the-proper regions, although
the magnitudes of the -heat flux show some variation from-the climatology. The-model
‘heats-the Arabian:Sea-and Bay of Bengal-in April much less than-the heating:of the:ocean
-depicted by the climatologies. The:model consistently shows strong heating-just south of
Madagascar. One other area where the model shows much stronger forcing than-in the
climatology is along the African coast in:July. The model has a maximum heating-of the
oocean-of over 450 w m2, while the climatologies (with heavy spatial averaging and-sparse
sampling) only show up to 160 w m~2 in this-area. The mean monthly plots of Figure
4.51 show the contrast between the complex heat flux-allowed by.the model during a given
month and-the temporally/spatially-smoothed climatologies. The Levitus forcing also
illustrates the freedom that the-top level of the model has to depart from the climatology.

The Levitus forcing (Figure 4.52), when.compared with plots of v 2rtical velocity
(Figure 4.52), allows us to quauiatively assess the effects of upweiling -and thermal
advection cn ihe Levitus-forcing. As an example, areas of strong heat flux into the-ocean
are visible in the Somali Current region in July, while strong upwelling is confined to a
smaller region along the Somali Coast. The advection-of the cold, :;pwelled water accounts
for the remaining area of strong heat flux into the Arabian Sea. During the months of
December through April, the maximum ir:tensity of surface thermal forcing in the-model is
at the southern coast of Madagascar; this “cold spot™ is a numerical artifact due to
divergence, and illustrates that the heat flux maps, combined with upwelling and advection

assessments, may be used to.help identify such anomalies in the model.
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F. THE SOMALI CURRENT SYSTEM

The Somali Current forms-a:two-gyre system-in the model, as described:previously.
A series of instantaneous plots of the-Somali Current-at 37.5-m iszshown in-Figure 4.53.
This series, covering the period from June 2'through August 16 of Year4, shows how the
Southern Gyre is formed at-approximately 2-3°N, and remains there, while the Great Whirl
is centered at 8°N-on July 14, and'has moved north to 10° by August 16. The Great Whirl
continues to move northward, but moves farther northward than shown:by observations,
because of the bathymetric simplifications of the model (J. O’Brien, personal
communication). Theisland of Socotra has been:=shoaled, and the:Guif-of Aden filled in,
which:both-play an important role:by the time the Great Whirl passes Cape Guardafui at the
tip of Somalia. Figure 4.54 illustrates the classical connection between the wind stress
along the Somali coast, surface currents turning offshore, upwelling, and associated cold
temperatures. The-upwelled températures aré-as cold as 14°C in the mean monthly plots.

The lack of interannual-variability in the Hellerman and Rosenstein (1983) wind stress
creates a Somali Current gyre system which-forms in a-consistent:manner throughout the
simulation, while observations have noted considerable variation in the-development and
propagation of the two-gyre system, due to variability in the winds-from year-to year. The
lack of interannual variability in the wind forcing in the-model leads to a lack.of temporal
and spatial variability in the upwelling regions along the Somali.coast. Hence, along the
east African coast-during the summer, the model climatology-has colder temperatures than
indicated in the climatological fields. Furthermore, as reported- by Jensen (1989), the
forcing of the Somali Current by-Hellerman and Rosenstein-(1983) wind stress results in
the less-common-situation where the Southern Gyre does not move northward and coalesce
with the Great Whirl. Simulations-of the more common situation w}lere the two gyres

coalesce have been performed by Luther and O’Brien (1985), using seasonal wind stress
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derived from the National Climate:Center Global Marine Sums (TD-9757) data set, which
has climatological winds on a 1° grid, instead of the 2° .grid of the Hellerman and
Rosenstein (1983) wind stress used by the Semtner and Chervin model. ‘Luther and
O’Brien’s (1989) continiuous-interannual simulation of the Indian Ocean, which used:Cadet
and Diehl’s (1984) 23-year-series-of observed winds, was divided into 14 years where the
two gyres coalesced, 7-years where the Southern Gyre:did not move-to the north, and 2
years without a two-gyre system. The output.of the Semtner and Chervin model forced by

Hellerman and Rosenstein (1983) wind stress'in the tropical Indian:Ocean is encouraging,

-and indicates that-the model-climatology may be made:more-realistic (particularly-in the

Somali. Current region) by incorporating interannual variability -into ‘the wind stress.
Unfortunately, a suitable-global set-of multiyear observations is not yet available.

The Somali Current in the model attains velocities ashighas 2 m s°1, which are lower
than the highest-observed currents of approximately 3:5-ms-1, although this should be
expected due to the climatological wind-stress and the horizontal resolution of.the current.
One of the difficulties in-analyzing the Somali-Current of-the SCM is that-the software tools
do not allow sections to'be taken perpendicular to the coast; only zonal or meridional cross-
sections may be ‘used to assess the Somali Current. It is common practice for the
observations to be taken in an alongshore/offshore plane, so direct.comparison is difficult.
Quadfasel and Schott (1983) presented historical-surface current data at 5°N along the
Somali Coast (Figure 4.55); accompanying SCM values of mean monthly v velocity are
presented for comparison. Cross-sections of v were taken at 5°N/48°E-52°E, and
maximum values:of the:prevailing current tabulated for-the monthly mean tapes of Year4.
These values show strong similarity in the development of the strength of the Somali

Current in the model with averaged observations.
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Thé Somali Current is known to extend barotropically to great d(:i)ths,duﬁng the-SW
monsoon, yet a southward-flowing:undercurrentzhas been documented:during the spring
transition and in the late summer.(leetmaa (1982), Schott-and Quadfasel (1982), Quadfasel
and Schott (1983), Schott (1983)). ‘During the northeast:monsoon, there is no southward
'under(counter)current, since ‘the flow is southwestward-at the:surface and at deeper-levels.
Cross-sections-of v velocity-at S°N-and vector plots at various levels:have been used to
-analyze-whether the SCM represents these subsurface flows correctly-along-the step-like
model continental outline. Leetmaa et al:(1982):presented cross-sections of alongshore
flow at 5°N, as shown in Figure 4.56-(a) for 16-17 May 1979. A.cross section-of v
velocity-(S°N/48°-53°E) from the SCM monthly mean tape of May, Year 4 is presented for
comparison in.Figure 4.56 (b). Although the monthly mean currents in the model are
weaker, the structure:is similar, and the southward-flowing undercurrent is present:at the
proper depth with the:core at the proper level. Plots similar to Figure 4.56 (b):indicate that
the SCM. has southward fiow at the surface during the months of November through
February, and northward-flow with-deep southward undercurrents-during March, April,
and May. The SCM-deep northward-flowing Somali Current has no undercurrent from
June through August, but in September and’October a deep undercurrent is present. Vector
plots give additional insight into-the behavior of the undercurrent in the model. Year 4
instantaneous vector plots at 37.5 m, 222:5 m, and 435.0 m along the African coast are
presented-in Figures 4.57, 4.58, and 4.59, depicting the flow on May 15, July 14, and
October 15, respectively. Obsetrvations have reported that the undercurrent tends to tum

offshore-between 3-5°N, while the undercurrents in the SCM show more complicated flow

patterns.




G. THROUGHFEOW IN THE INDONESIAN ARCHIPELAGO

A key test:of any global ocean'model is its ability to accurately simulate the:interaction
between ocean:basins. Although the SCM has some limitations:in this respect, such:as the
lack of interaction with the Arctic Ocean, it does allow flow:between the Pacific:and Indian
‘Oceans. The model domain includes a channel between the Asian continent and
Australia/New Guinea (Fig. 2.4). The SCM has submerged some islands, and
incorporated others.into the Asian landmass, but-the Java Trench and adjacent continental
shelves do allow signiﬁcant'tranSpon. A net transport from the Pacific-Ocean into th-
Indian Ocean is known to occur through:the Indonesian archipelago.

As Semtner and Chervin (1988) described,-the flow of warm Pacific waters into the
Indian Ocean through the Indunesian archipelago-is vital to the heat transport across the
Indian Ocean and into th. Atlantic. The mass transport into the.Indian Ocean may play a
part in the flow of the SEC, West Australian Current, and in-the Leeuwin Current (Godfrey
and Golding (1981), Godfrey and Ridgway(1985),Kundu and McCreary (1986), Weaver
and Middleton (1989)). Interannual variability in the flow from the Pacific into the Indian
Ocean may be associated with the El Nifio Southern-Oscillation (White er al. (1985),
Nicholls (1984)).

Despite the importance of the flow between the Pacific and Indian Oceans, the
throughflow and its interannual variability have not been-well-observed. Estimates inferred
from observations include 5 Sv by Fine (1985) and 8.5 Sv by Gordon (1986). Estimates
from numerical modeling studies range from 7 Sv, by Kindle ez al. (1987), to Godfrey's
‘(1989) estimate of 1624 Sv. Godfrey (1989) argued that the actuzl throughflow must be
closer to 16 Sv than to 0 Sv by modeling Indian Ocean steric heights with no throughflow,

and showing that the resulting steric height gradients show a much poorer match to

observations than the model output with 16 Sv throughflow. Semtner and Chervin (1988)




reported-a throughflow into-the Indian Ocean:of 15-18 Sv. The throughflow in the SCM
agrees well with the results-of the annual forcing phase of the experiment. Méan monthly
mass transport calculations at 117.5°E-from 5 years of the seasonalforcing are presented in
Table 4.1 . The mean annual westward throughflow is 17.74 Sv.

TABLE 4.1. MEAN WESTWARD- MASS TRANSPORT IN THE
INDONESIAN ARCHIPELAGO. .

Net Westward |~ Standard
Month Transport (Sv) | _Deviation (Sv)
January 15.96 1 94 ‘
February 18.74 - ~70
‘March ~20.66- ) ~.80
April i - 21.28 i 38
May " 18.20. B 1.02 ]
June - - 18.64 .29
July - T 1772 72
August ) - 16.08 ) ~79
September - 16.72 ) - .51
October - 1694 1 32
November - 16.22 .95 )
December 15.70 88

These results are illustrated in Figures 4.60 and-4.61. Figure 4.60 shows the monthly
mean westward, eastward,.and net westward transport for the five-year time series. The
eastward and westward transports are highly correlated because strengthening of the
westward-flowing Pacific North Equatorial Current, which turns south at the western
boundary of the basin, results in strengthening of eastward-flowing countercurrents.
Furthermore, any eddies in the section-will contribute equally to-an increase in eastward
and westward flows. Figure 4.61 shows the five years of monthly net westward transport
overlaid on the mean net westward transport. The interannual variability of the monthly
mean mass transports in thespresence of interannually-invariant wind forcing is shown, and
the seasonal cycle of mass-transportis well-defined. Figure 4.62 shows the-bathymetry

and typical zonal transport across the sections at 117.5°E.
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V. DISCUSSION AND CONCLUSIONS

A. MODEL TEMPERATURE VS. CLIMATOLOGY

If the goal of a model is to simulate the ocean as accurately-as possible, then the - model
should exhibit a-realistic climatology. In the case of the SCM, the question is whether the
inputs of the Levitus (T,S) and Hellerman and-Rosenstein (wind:stress) climatologies result
in a model which reproduces the Levitus (1982) climatology. For a complete analysis of
the SCM climatology, averages of-individual months over-multiple years are necessary, but.
these products have not yet been compiled: However, the amount of inherent interannual
variability of the SCM is small, and-the fields contoured from January of one year look
very similar to January of any year, due to the lack of interannual variability in the
Hellerman and Rosenstein wind stress. As described previously, the eddy fields are
unique for each year, mixing heat, momentum, and salt, yet the mean monthly results are
quite similar from year to year Significant-comparisons can be made between the SCM
mean monthly temperature-plots and climatology. Comparisons of monthly mean 12.5m T
in Year 7 are shown with the Hastenrath and Lamb (1979) sea surface temperatures in
Figures 5.1-5.12.

Overall, the robust-diagnostic, free-thermocline strategy does not constrain the
Semtner and Chervin (1988) model so severely that it must diagnostically reproduce the
Levitus (1982) climatology of T (or S), but allows a prognostic solution in accordance with
the applied wind stress, where advection, upwelling, and the mixing effects of eddies may
dominate the solution at any given grid-point. The primitive equation global ocean model

responds to the seasonal forcing with a realistic simulation of the circulation, and produces
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a mode! climatology which is in good agreement with the historical data bases of

-observations in the tropical Indian Ocean.

There are differences between the observed and model climatologies which illustrate

deficiencies not only in the model, but also in the climatological data base, both of which

must be-overcome to enable long-term studies of climatic trends. The observations-of the

Somali Current are inadequate, and result in temporal and spatial averaging of the

-climatological data in the region which is inadequate for the intensity and interannual

variability of the current. The lack of interannual variability in the Hellerman and
Rosenstein (1983) wind stress creates deviations from climatology in the Somali Current
region, due to the formation of upwelling zones in the same place every year, and no
northward movement of the Southern Gyre. Figure 5.7 shows that along the Somali coast
in July, the temperatures get as low as 13°C, yet the climatology shows isotherms only as
low as 22°C. While multiyear averages would smooth some of the isotherms, there would
still remain a strong packing of the isotherms along the Somali coast in the model that
would be significantly cooler than the 22° isotherm. There are some further improvements
to the model climatology available from increased resolution, such as correction of the

packing of isotherms into the “stairstep” shelf contours along the-Somali coast .

B. COMPARISON WITH CURRENT DRIFTER STUDIES

The SCM produces a vast amount of archived data, and the vector plots generated
from this data reveal the synoptic picture of the currents in the Indian Ogean as the seasonal
cycle progresses. The realistic circulation of the SCM is strikingly apparent when
compared with studies of drifting surface buoys in the Indian Ocean. M. .nari et al.
(1990) described the current distributions derived from surface buoy trajectories in the
tropical Indian Ocean, analyzing buoys deployed between 1975 and 1987. Qualitative

comparisons were made of the figures and descriptions of Molinari ez al. (1990) with the
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SCM output. Although a direct comparison of the data sets:to generate. difference plots
could prove informative, it was-beyond the scope of this study, and must be considered for
future work. The SCM results‘matched the descriptions of the surface circulation patterns
by Molinari e al. quite closely, and monthly average current vectors derid from the
buoys are shown as Figures 5.13 -5.16, for comparison with the 37.5 m vector plots of
Figures 4.1-4.6. During the boreal winter, the SCM does.not have the strong eastern
boundary current shown by buoy trajectories along Indonesia, between 5°S and 10°S. In
the Bay of Bengal, the model shows a separation of the western boundary current during
boreal winter at approximately 17°N, approximating the separation-at 19°N described by the
buoy trajectories. The buoy average velocities in-March show-a meandering of the ECC'in
the western Indian Ocean at 5°S; a feature that is closely duplicated in the model vector plot

of Figure-4.4.

C. MASS TRANSPORTS

Monthly mean zonal mass transports for the major equatorial currents have been
calculated for Year 4 at four longitudes: 60°,70°,80°, and 90°E. In taking on such a.task in
the Indian Ocean, there were several arbitrary definitions made. Undercurrents with closed
subsurface isotachs were segregated from the mass transport calculations of the surface
carrents as much as possible, and surface currents were calculated only as deep as 610m.
The EUC was considered to be the eastward flowing undercurrent during the months when
it could be distinguished from the ECC. In May, it had surfaced to be included with the
ECC. Although an eastward current occurs throughout the year at approximately 5°S, it
was not calculated as an explicit current. The eastward-flowing ECC was defined to exist
at a given longitude from the time when it could be distinguished from the waning SMC
and Wyrtki jet in December or January, through the end of May, when it was included with

the SMC (as it could no longer be considered a countercurrent). The SEC was defined
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throughout the year, and-was, with few exceptions, the equatorial current with the greatest
mass-transport. Surprisingly, the NEC and ‘the westward flow which remained to the
south of India during the. SW monsoon could be-calculated-as-a current throughout-the
year. The results of these arbitrary definitions-and-calculations are:shown —jniFi gures 5.17-
5.22.

The zonal mass transports are-illustrated in Figures 5.17-5.20, while the variation of
mass transport with longitude is shown for the months of February (Figure 5.21) and July
(Figure 5.22). Several trends are evident from these figures. First, the EUC achieved-its
highest mass transport at 70°E, and weakest at 90°E. It peaked in March, except at 90°E,
where the maximum zonal mass transport occurred in February. The inclusion of the
surfaced EUC with ECC calculations in May, combined with the Wyrtki jet, resulted in a
peak in the ECC in May, except at 90°E, where it peaked in April. June was the strongest
month for the SMC because the Wyrtki jet was included, thereafter showing a general
decline as a result of:the waning of the Wyrtki-jet, and increased northward mass transport
by the Somali Current. The SMC reached a secondary-peak in October/November, with
the second Wyrtki jet. Figures.5.22 and 5.23 illustrate the significant variation in the zonal

mass transports with longitude, showing greater variation in February than July.

D. OBSERVATIONS FROM ANIMATION STUDIES

In the late stages of this project, some data analysis and animation tools became
available, which brought new insight into the model output. Monthly mean tapes were
analyzed for the global ocean for four years of the seasonal cycle. The temperature fields
were displayed as raster images, using various color schemes for enhancement of details.
The prominent feature of animation of the global images was the strong, regular seasonal

cycle in the model, which was much more significant than any interannual variability.

36




The animation-of the Indian Ocean data set was even more revealing. A-time series of
122 three-day instantaneous archive tapes were analyzed for the variables-u, v, and T,
encompassing year 4 of the study in the Indian-Ocean. The richness of wave activity is-
striking, and-shows the eddies at work in the model, transporting and diffusing heat. The
animation of three-day. intervals is very smooth, with jitter only at the end of the year where
the loop goes back to-the beginning of Year 4. Figure 5.23 was generated prior-to the
animation. It illustrates the standard deviation of sea surface slope for both the annual
(Figure 5.23 (a)) and monthly (Figure 5.23 (b)) wind-forcing phases of the model. The
strong eddy activity implied-in Figure 5.23 (b)-is quite prominent in the animation. The
eddies appear to be lee waves in the zonal flow past the tip of India. Animation also shows
the northward movement of the cold temperature pattern associated with upwelling, as the
Great Whirl separates from the Somali coast. The deep effects of the Somali Current and
associated gyres can beseen, where temperature patterns similar to the surface patterns are
visible at- multiple levels. The meandering of the ECC in the western basin in March shows
up strongly in the temperature fields.

Animation of the 160-m level in the ocean is quite striking, illustr‘ating the westward
transport of heat by the SEC and NEC in January and February, while the equatorial
eastward transport of heat by the EUC becomes evident by March. This eastward transport
of heat at the 160 m level is strongly enhanced in May and June, as the Wyrtki Jet and the
EUC merge. The warm pool of water transported in the eastern end of the basin circulates
cyclonically in the Bay of Bengal as a coastally-trapped Kelvin wave, and propagates
around the tip of India into the Arabian Sea. This pool of warm water serves as-an

excellent tracer for the eddies formed at the southwest tip of India. Animation of the

temperature fields supports the theory that the westward equatorial undercurrent 1s due to

relaxation of water piled up by the Wyrtki jet. When the surge of warm water transported
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eastward by the Wyrtki Jet reaches the coast, it appears to reflect back:to the west-during
June and July; The animation-dramatically illustrates the role of the:SEC in:transporting
heat across the Indian Ocean-and:into the Agulhas Current, as described in ‘Semtner-and
Chervin (1988). Not only does-the SEC transport warm water from the Pacific, -but
concurrently with the northward-travelling wave in the Bay of Bengal, a southward-
travelling Kelvin wave brings warm water into the Indonesian-Australian passage, where
warm eddies are-shed into the-SEC for transport across to the Atlantic.

Various sectionsof zonal velocity were animated to investigate the issue of upward
phase propagation discussed-in Chapter IV.C. Animation of meridional sections-shows-an
upward phase propagation of u velocity throughout the seasonal cycle. The hypothesis:that
this upward phase propagation is due to westward propagation of a feature with some
vertical tilt is supported by animation:of a zonal section of u velocity, taken along-the
equator. This animation shows very definite-westward phase propagation to-be .taking

place, and suggests that further investigation into this-phenomenon is-warranted.

E. CONCLUSIONS

While further improvements may be gained by improving the horizontal and vertical
resolution of the model, the continued improvement of global ocean models clearly calls for
better climatologies of wind stress, incorporating greater resolution and -interannual
variability. Improved bathymetry in the model is desirable as the resolution is improved,
accompanied by a more realistic representation of islands. The study of Killworth-et al.
(1990) indicates that the calculations involving islands may be tractable with a free-surface
effect. The use of such large models generates massive data sets, requiring new
visualization tools for analysis. The animation tools explored in the course of this study

were tremendously helpful in-understanding the features of the circulation. While other

improvements are also desirable, including the addition of the Arctic Ocean and improved




modeling of the mixed layer, any major.changes must be tested carefully before embarking
on a task as extensive as this. The parameterization of surface heat flux accordingto
climatology of temperature, while less desirable than explicitly-prescribing the heat flux,
remains the best option, as suitable climatologies of heat flux are unavailable, and heat
fluxes remain an object of extensive investigation-and discussion.

The Semtner-Chervin eddy-resolving global ocean model accurately simulates many-of
the features of the seasonal cycle of the tropical Indian Ocean. Model output shows that
this global model captures details of circulation previously available only through regional
simulations. The-model simulates.the development-of the tropical circulation-in the two

monsoon regimes, including the South Equatorial Current, North Equatorial Current,

Equatorial Countercurrent, SW Monsoon Current, Equatorial Undercurrent, and seasonal

Wyrtki jets The seasonally reversing Somali Current develops a Southern Gyre and the

Great Whirl, and seasonal undercurrents The model clearly indicates a seasonal,

poleward-flowing circulation off the western Australian coast, simulating the Leeuwin-

Current. Mass transports of the zonal equatorial currents display considerable variability
across the basin, and the throughflow from the Pacific displays a strong seasonal cycle
with small interannual variability. The model monthly mean temperature fields show a
good agreement with climatology of sea surface temperature, and the current vector plots
are in agreement with surface drifting buoy studies. The analysis of the SCM output in the
tropical Indian Ocean suggests that the model is capable cf producing even better results

given better resolution, and improved wind stress, incorporating interannual variability.
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Figure 2.3  The global ocean model domain at 12.5 m. The only islands are
Australia/New Guinca, New Zealand, Antarctica. Other islands have

been shoaled or attached to continental land masses, and marginal seas
have been filled in.
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stress during Year 4. (a) January and (b) February.
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SHIP DRIFTS = I°

Figure 4.15

Equatorial zonal current estimates from ship drift reports.
(Reverdin (1987) after Cutler and Swallow (1984) 1°S-1°N. The time
scale is reversed relative to Figure 4.14.
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Figure 4.27 Monthly mean zonal currents at 80°E during Year 4.
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Figure 4.29 Mean monthly zonal currents in February of Year 4.
(a) Meridional section at 0°, (b) 60°E, (c) 70°E, (d) 80°E. (e) 90°E.
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Figure 4.59 Somali ’ 7.5 | ‘
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igure 4. Somali- Current vector plots of October 15, Year 4. (a) 37.5 .
. m, (b) 222.5 m, and (c) 4350 m. o )
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‘Month

Seasonal cycle and interannual variability of Pacific-Indian -
Ocean throughflow at 117.5°E. Years 4-8 are superimposed on
the mean. ] ]




Figure 4.62
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Zonal section at 117.5°E, uscd to calculate throughflow.
The figure illustrates u velocity in August, Year 4. Although there are

significant flows in cach dircction, the net westward mass transport is

16.4 Sv. .




Figure 5.1  Comparison of January T at 12.5 m with climatology. (a)}
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Figure 5.2

Comparison of February T at 12.5 m with climatology. (a)}
Monthly mean temperature in the model, and (b) Hastenrath and Lamb}

(1979) sea surface temperature.
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|Figure 5.3

Comparison of March T at 12.5 m with climatology. (a)
‘Monthly mean temperature in the model, and-(b) Hastenrath and Lamb|
(1979) sea surface temperature. -
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Figure 5.4

Comparison of April T at 12.5 m with climatology. (a)
Monthly mean temperature in the model, and (b) Hastenrath and Lamb

(1979) sea surface temperature.
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Figure 5.5  Comparison of May T at 12.5 m with climatology. (a)
Monthly mean temperature in the'model, and-(b) Hastenrath and Lamb
(1979) sea surface temperature. ] i
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|Figure 5.6

Comparison of June T at 12.5 m with climatology. (a)]
Monthly mean temperature in the model, and (b) Hastenrath and Lamb|.
(1979) sea surface‘temperature, .
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Figure 5.3  Comparison of August T at 12.5 m- with climatology. (a)
Monthly mean temperature in the model, and-(b) Hastenrath and Lamb
(1979) sea surface temperature.
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7Figure 5:9  Comparison of September T at 12.5 m with climatology. (a)

Monthly mecan temperature in the model, and (b) Hastenrath and Lamb

(1979) sea surface temperature.
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Figure 5.10 -Comparison of October T at 12.5 m with climatology. (a)].
] Monthly mean-temperature in the model, and (b) Hastenrath and Lamb|

(1979) sea surface temperature.
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Figure 5.11 Comparison of November T at 12:5 m with climatology. (a)
Monthly mean temperature in the-model, and (b) Hastenrath and Lamb
_(1979) sea surface temperature.
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Figure 5.23 Standard: deviation of sea slope (cm/10- km) of the model
(a) 300 day calculation during annual mean forcing phase, and (b) three-
year calculation-(Years 5-7) of the seasonal forcing-phase. _
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